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Our goal is to find which beam position (x, y) has pre-
dicted signals that are as close to the measured button
signals Vk as possible. To simplify the problem, exploit-
ing the geometry of our buttons, the first thing we do
is calculate the difference-over-sum of the horizontal and
vertical buttons, and define these as the new target quan-
tities.

qx =
Vright − Vleft
Vright + Vleft

, qy =
Vtop − Vbottom
Vtop + Vbottom

At the same time, the predicted button signals have been
computed in advance using Poisson [1] or some other field
solver. The method to transform the time-dependent 3D
problem of the bunch interacting with the buttons into
a much simpler static 2D problem, allowing solution in
Poisson, is detailed in [2]. Regardless of their source,
these predicted signals are assumed to have been inter-
polated onto a uniform grid in the region of interest. We
form the same difference-over-sum with these values, and
call them Qx(xi, yj), Qy(xi, yj), where the indices on x
and y are to indicate that it’s only evaluated on a 2D
grid. We will define the beam position (x, y) as the point
that minimizes the following function f .

f = (Qx(x, y) − qx)2 + (Qy(x, y) − qy)2

where it’s understood that (x, y) off the fieldmap grid
would be 2D interpolated, as described below. We can
start by evaluating f on the fieldmap grid, and just check-
ing every point to see which grid point has the smallest
value. This is the simplest possible search, and smarter
initial guesses, along with searches over a smaller area of
the grid, might reduce the computational time. But, for
the purposes here we will just exhaustively search all the
points.

As a result, we now know the closest grid point to the
desired best fit (x, y), which we will call x0 and y0. To
do better, one needs to minimize a 2D interpolation of
f in between grid points. Depending on the order of the
interpolation, this has varying levels of complexity. For a
bicubic or higher order interpolation, one would probably
have to use some standard minimization algorithm on the
interpolation function. If a “biparabolic” interpolation
is sufficient, then we can find the root analytically, and
write it as a simple function of the grid points directly
surrounding the (already found) closest grid point. If we
call the value of f on this closest grid point f0,0, then we
have the following surrounding points.

f−1,−1

f−1,0

f−1,1

f0,−1

f0,0

f0,1

f1,−1

f1,0

f1,1

We approximate f in the following form around that
point, where δx and δy are now relative to that central
point:

χ2 ≈ f0,0 + a δx+ b δy +
1

2
c δx2 +

1

2
d δy2 + e δxδy

The coefficients can be written:

a =
f1,0 − f−1,0

2∆x

b =
f0,1 − f0,−1

2∆y

c =
f1,0 − 2f0,0 + f−1,0

∆2
x

d =
f1,0 − 2f0,0 + f−1,0

∆2
y

e =
f1,1 + f−1,−1 − f−1,1 − f1,−1

4∆x∆y

where ∆x,y is the grid spacing in either x or y. The
final best fit beam positions (x, y) are as follows.

x = x0 +
ad− be

e2 − cd

y = y0 +
bc− ae

e2 − cd

Edge cases have to be handled with some care. If any
of the points surrounding (x0, y0) are outside of the pipe
in the fieldmap file, then f = 0/0 is ill-defined on those
points. The simplest solution in that case is to just choose
x = x0, y = y0, that is, to do nearest-neighbor interpo-
lation. This is a pretty rough approximation, but since



2

the beam position is apparently at the edge of the pipe,
the operator probably doesn’t need to know its position
better than that.

So, the complexity of this part of the algorithm is tiny–
just a few floating point operations to fine tune the best

fit value. All of the real computational burden is in the
initial calculation of f on each of the fieldmap grid points,
which has to be repeated for every new beam position.
Still, if there are only 10s of thousands of grid points,
this shouldn’t be a problem.
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