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Abstract
An algorithm is presented to calculate the field components [Bx (x, y, z), By (x, y, z), Bz (x, y, z)] of the magnetic field 

at a point (x,y,z) in space, from the knowledge of the components [Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] on a 
”reference plane”, which is normal to the y-axis at y=0. The algorithm, which is a general one and is not restricted to fields 
with mid-plane symmetry is based on the Taylor series expansion of the magnetic field components at any point in space in 
terms of the distance (y) of the point from the reference plane. The coefficients of the Taylor series expansion are expressed 
in terms of the on-plane field components and their partial derivatives with respect to spatial coordinates (x,z). The field 
components are usually generated from magnetic field measurements on a rectangular grid on the plane. The required 
partial derivatives of the field components on the plane can be computed with two methods; numerically, or by fitting a 
polynomial function to the experimentally measured values of the field components and subsequently take the required 
partial derivatives of the polynomial function. Each of these two method which calculates the partial derivatives of the 
field components on the plane, is applied to calculate the off-plane field components of the magnetic field generated by a 
modified Halbach magnet [1] of inner radius of 4.4 cm and it is found that each method provides accurate results with a 
relative error <1% deviation from the ”ideal” fields if the y distance of the point from the reference plane is smaller than 2 
cm. This algorithm is part of the RAYTRACE computer code [2] and has been applied [3] on a dipole magnet with median 
plane symmetry.

INTRODUCTION
With the advent of the technology to perform more accurate magnetic field measurements on magnets which guide and 

focus charged particle beams, the beam optics calculations very often rely on magnetic field measurements of a single or 
many magnets of a beam line system. These measurements are performed on a 3D or 2D rectangular grid in space. If the 
measurements of the magnetic fields are made on a 3D rectangular grid this field map is used directly in computer codes 
[2,4] which integrate the equation of motion of a charged particle in this 3D field map to derive the optical properties of the 
system. However if the magnetic field measurements are made on a plane grid, the Maxwell equations must be used to 
calculate, from the measured components of the magnetic field on a plane grid, the field components at any point in space. 
Similar algorithms which calculate 3D fields at a point in space from 2D field maps on a surface are being used by the 
computer code zgoubi [5, 6]. Other algorithms which calculate B-fields in space from the knowledge of the field along the 
symmetry axis of an axisymmetric magnet have been developed and are used in computer codes [2]. A recent paper on 
such an algorithm appears in ref. [7]. In this technical note an algorithm is presented which calculates the magnetic field at 
any given point in space from the knowledge of the magnetic field components on a plane which in this paper is referred as 
the reference plane. Fig. 1 shows the grid points (intersection points of the red lines) on a plane where the magnetic field 
components (yellow arrows) are measured experimentally. The task is to calculate the field components (blue arrows) at any 
given point in space, at a distance y from the plane, from the knowledge of the field components on the reference plane. No 
magnetic material exists in between the plane and the point in space where the field is calculated. The algorithm provides 
the values of the components of the magnetic field at a distance y from the plane. Although most of the magnets used in the 
applications of charged particle beam optics and in particle accelerators have median plane symmetry, in this technical note 
we will remove this constrain of median plane symmetry, and the only requirement will be the experimentally measure field 
components of the magnetic field at the grid points of the plane. The algorithm is based on the Taylor series expansion of 
the magnetic field components at the point of interest in terms of the y coordinate which is the distance from the plane of the 
point at which the field is to be calculated. The coefficients of the Taylor series expansion are expressed in terms of the field 
components at the grid points on the reference plane and their spatial partial derivatives with respect to x an z on the plane.
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Figure 1: A schematic diagram of a grid on a plane. The magnetic field components (yellow arrows) at any grid point on
the plane are measured. The algorithm calculates the magnetic field components (blue arrows) at any given point in space
at a distance y from the plane. In this paper this plane is referred as the reference plane.

THE DEVELOPMENT OF THE ALGORITHM
In this section we present in details the development of the algorithm which calculates the off plane components

[Bx (x, y, z), By (x, y, z), Bz (x, y, z)] of the magnetic field at a particular point A(x,y,z) of a magnet and at a distance y from
the plane over which the field components, on specified grid points like the intersection of the red lines in Fig. 1, are known.
We start by expanding the components of the field ~B(x, y, z) as a Maclaurin series in y to 4th order.

Bi (x, y, z) = Bi (x, 0, z) +
4∑
j=1

ai j (x, z)y j (1)

The index i runs from 1 to 3 with (1,2,3)⇔(x, y, z) and the index j in this expansion runs from 1 to 4. Since the values of
the field components on the plane (y=0) are known the task is to express the coefficients of expansion ai j (x, z) in terms of
these field components on the plane and also in terms of their partial derivatives of these field components with respect to
the x and z spatial coordinates. By applying the Maxwell’s equation ~∇ · ~B(x, y, z) = 0 on the magnetic field given by the
Taylor series expansion in Eq.1 the following relation is obtained.

~∇ · ~B(x, y, z) =
∂Bx (x, 0, z)
∂x

+

4∑
j=1

∂ax j (x, z)
∂x

y j+

∂By (x, 0, z)
∂y

+

4∑
j=1

jay j (x, z)y j−1+

∂Bz (x, 0, z)
∂z

+

4∑
j=1

∂az j (x, z)
∂z

y j = 0

(2)

In this paper is assumed that all partial derivatives of the measured magnetic fields on the plane with respect to y are equal
to zero since the measured fields on the plane do not explicitly depend on y. Zeroing the coefficients of the powers of y in
Eq. (2) is obtained:

ay1(x, z) = −
(
∂Bx (x, 0, z)
∂x

+
∂Bz (x, 0, z)
∂z

)
(3)

∂ax j (x, z)
∂x

+ ( j + 1)ay( j+1) (x, z) +
∂az j (x, z)
∂z

= 0 f or j = 1 to 3 (4)

Use of the Maxell’s equation ~∇ × ~B(x, y, z) = 0 yields:

~∇ × ~B(x, y, z) = (
∂Bz

∂y
−
∂By

∂z
)î + (

∂Bx

∂z
−
∂Bz

∂x
) ĵ + (

∂By

∂x
−
∂Bx

∂y
) k̂ = 0 (5)



Substituting Eq. (1) in the x-component of Eq. (5) is obtained:

∂Bz (x, 0, z)
∂y

+ az1 + 2az2y + 3az3y
2 + 4az4y

3 =
∂By (x, 0, z)
∂z

+
∂ay1

∂z
y +
∂ay2

∂z
y2 +

∂ay3

∂z
y3 +

∂ay4

∂z
y4 (6)

Zeroing the coefficients of the powers of y in Eq. (6) is obtained:

az1 =
∂By (x, 0, z)
∂z

(7)

( j + 1)az j =
∂ay j (x, z)
∂z

f or j = 1 to 3 (8)

Setting the z-component of Eq. (5) to zero the relations below are obtained:

ax1 =
∂By (x, 0, z)
∂x

(9)

( j + 1)ax j =
∂ay j (x, z)
∂x

f or j = 1 to 3 (10)

Expression of the coefficients ai j in terms of known Quantities
Using the results of the previous subsection the coefficients ai j are expressed in terms of the derivatives of the B-fields

on the plane.

The 1st order ai1 coefficients
From Eqs. (9, 3, and 7)

ax1 =
∂By (x, 0, z)
∂x

(11)

ay1(x, z) = −
(
∂Bx (x, 0, z)
∂x

+
∂Bz (x, 0, z)
∂z

)
(12)

az1 =
∂By (x, 0, z)
∂z

(13)

The 2nd order ai2 coefficients
From Eq. (10, 4, 8, and 11, 12, 13)

ax2 = −
1
2

(
∂2Bx (x, 0, z)
∂x2 +

∂2Bz (x, 0, z)
∂x∂z

)
(14)

ay2 = −
1
2
*
,

∂2By (x, 0, z)
∂x2 +

∂2By (x, 0, z)
∂z2

+
-

(15)

az2 = −
1
2

(
∂2Bx (x, 0, z)
∂z∂x

+
∂2Bz (x, 0, z)
∂z2

)
(16)

The 3rd order ai3 coefficients
From Eq. (10, 4, 8, and and 14, 15, 16)

ax3 = −
1
6
*
,

∂3By (x, 0, z)
∂x3 +

∂3By (x, 0, z)
∂x∂z2

+
-

(17)

ay3 =
1
6
∂3Bx (x, 0, z)
∂x3 +

∂3Bz (x, 0, z)
∂x2∂z

+

∂3Bx (x, 0, z)
∂z2∂x

+
∂3Bz (x, 0, z)
∂z3 )

(18)

az3 = −
1
6
*
,

∂3By (x, 0, z)
∂z∂x2 +

∂3By (x, 0, z)
∂z3

+
-

(19)



The 4th order ai4 coefficients
From Eq. (10, 4, 8, and and 17, 18, 19)

ax4 =
1
24

(
∂4Bx (x, 0, z)
∂x4 +

∂4Bz (x, 0, z)
∂x3∂z

+
∂4Bx (x, 0, z)
∂x2∂z2 +

∂4Bz (x, 0, z)
∂x∂z3 ) (20)

From Eq. (6) (25) and (27)

ay4 = −
1
24

(
∂4By (x, 0, z)
∂x4 + 2

∂4By (x, 0, z)
∂x2∂z2 +

∂4By (x, 0, z)
∂z4 ) (21)

From Eq. (13) and (26)

az4 =
1
24

(
∂4Bx (x, 0, z)
∂z∂x3 +

∂4Bz (x, 0, z)
∂x2∂z2 +

∂4Bx (x, 0, z)
∂z3∂x

+
∂4Bz (x, 0, z)
∂z4 ) (22)

CALCULATION OF THE DERIVATIVES
In the previous section the coefficients ai j in Eq. 1 are expressed as a function of the field components on the reference

plane, and as a function of their partial derivatives of these field components with respect to the x and y coordinates. The
numerical values of the three components of the field on a plane are usually provided as the values of these components at
specified points on a rectangular grid of the reference plane. In the RAYTRACE code [2] two methods are used to calculate
the derivatives of the fields on the plane; the ”fit of a function” method’ and the ”numerical” method’. Both methods are
described in the following two sub sections. The numerical comparison of the two methods, each applied to calculate the
magnetic field at a point (x, y, z) is described in one of the following sections.

Fit a Function method
Fig. 2 shows the grid points of the global (x,z) coordinate system where the field components [Bx (x, y = 0, z), By (x, y =

0, z), Bz (x, y = 0, z)] are measured, and also shows two of the many ”small-grid-areas” (ABCD), (EFGH) in which the
global grid is partitioned. The small grid areas may partially overlap with each other, and each area can be characterized

Figure 2: The large 2D grid in the (x,z) coordinate system is partitioned in many ”small-grid-areas” two of these small
areas (ABCD), (EFGH) are shown. The small grid areas may overlap, and each area can be characterized by the (n,m)
indices and its local (xl, yl) coordinate system. The local coordinates (xl, yl) of each small grid are related to the global
(x,z) coordinates through the equations x=x0(n,m) + xl and z=z0(n,m) + zl

by the (n,m) indices and its associated (xl, yl) local coordinate system. With this method a polynomial function shown in
Eq. 23, is fitted to the experimentally measured values of the magnetic field components. The local coordinates (xl, yl) of
each small grid are related to the global coordinates (x,z) through the equations x=x0(n,m) + xl and z=z0(n,m) + zl , where



x0(n,m) and z0(n,m) are the global coordinates of the centers (xl, yl)=(0,0) of the ”small-grid-area” which is characterized
by the indices (n,m).

Bi (n,m, xi, zl) = Bi (n,m, 0, 0) +
4∑
j=1

4∑
k=1

ci,n,m, j,k (xl) j (zl)k (23)

In Eq. 23 the index i corresponds to the field component with i=(1,2,3)⇔(x, y, z) and the indices n,m correspond to the
particular ”small-grid-area” of the global grid. The xl ,zl variables are the local coordinates of this ”small-grid-area” which
are related to the global coordinates (x, z) through equations mentioned earlier. The coefficients ci,n,m, j,k are calculated
using the method of Singular Value Decomposition (SVD) [9] which is applied to solve N equations with M unknowns
(N≥M). This method of fitting a function to the experimentally measured field components at the grid points of a rectangular
grid on the median plane of a magnet has been used in the RAYTRACE code to calculate the beam optics of the AGS
synchrotron [8] using the median plane field maps of the AGS combined function magnets. An example of the application
of this method will be given in one of the following sections.

Numerical method
The numerical method is based in generating a local grid as shown in Fig. 3. The field component Bi (x, z) at any grid

point of Fig. 3 can be expressed with the following equation (24) which is the 2D Maclaurin series expansion of the field
component in terms of the local coordinates ∆xl ,∆zl .

Bi (x, z) =
3∑
j=0

3∑
k=0

k!
j!( j − k)!

∂ jBi (x, z)∂ j−kBi (x, z)
∂x j∂z j−k

(∆xl) j (∆zl) j−k (24)

Substituting in Eq. 24 the field values of each component Bi (x, z) corresponding to the grid points of Fig. 3 one can

Figure 3: The field components [Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] on each grid points must be known for the
calculation of the field derivatives by using the equation (24).

generate enough equations sufficient to calculate the numerical values of the required derivatives for the calculation of the
coefficients ai j .
As an example of calculating the derivatives appearing in the one-column of the matrix equation of Fig. 4, the values of
the field components Bi (ix, iz ) appearing in the last one-column matrix were selected from the grid points (ix, iz ) . This
set of N linear equations with N unknowns can be solved by ”hand” or much easier using the ”mathematica” computer
code. In the following subsection are the expressions of the required partial derivatives of the field components, in terms of
on-the-plane field components Bi (ix, iz ). These derivatives are required for the calculation of the coefficients ai j .



Figure 4: A set of N linear equations with N unknowns in a matrix form A·X=B to calculate the partial derivatives appearing
in the (one-column N-rows) matrix.

First order derivatives

∂Bi (x,z)
∂x = 1

12∆x {8[Bi (1, 0) − Bi (−1, 0)] − [Bi (2, 0) − Bi (−2, 0)]} (i = x , y , z)
∂Bi (x,z)

∂z = 1
12∆z {8[Bi (0, 1) − Bi (0,−1)] − [Bi (0, 2) − Bi (0,−2)]} (i = x , y , z)

Second order derivatives

∂2Bi (x,z)
∂x2 = 1

12(∆x)2 {16[Bi (1, 0) − Bi (−1, 0)] − [Bi (2, 0) − Bi (−2, 0)] − 30B(0, 0)} (i = x , y )
∂2Bi (x,z)

∂z2 = 1
12(∆z)2 {16[Bi (0, 1) − Bi (0,−1)] − [Bi (0, 2) − Bi (0,−2)] − 30B(0, 0)} (i = y , z )

The second order derivatives below have been calculated in three different ways depending on the grid points se-
lected from Fig. 3 to generate the set of N equations with N unknowns in Fig. 4 which calculates the derivatives. The
numerical values of the three derivatives bellow differs by less than 0.04%. This difference is much smaller than the
calculated error of the derivatives when the derivatives are calculated from experimental field measurements therefore any
of the three expressions can be used in the calculations of the field ~B(x, y, z).

∂2Bi (x,z)
∂x∂z = 1

4(∆x)∆z) {[Bi (1, 1) − Bi (−1,−1)] − [Bi (1,−1) − Bi (−1, 1)]} (i = x , y , z )

∂2Bi (x,z)
∂x∂z = 1

4(∆x)∆z) {4 ∗ Bi (0, 0) + 3[Bi (1, 1) + Bi (−1,−1)] − ( 1
3 )[Bi (1,−1) + Bi (−1, 1)]

− ( 1
3 )[Bi (2, 1) + Bi (−2,−1)] − ( 1

3 )[Bi (1, 2) + Bi (−1,−2)] − ( 7
3 )[Bi (1, 0) + Bi (−1, 0)]

− ( 7
3 )[Bi (0, 1) + Bi (0,−1)] + ( 1

3 )[Bi (2, 0) + Bi (−2, 0)] + ( 1
3 )[Bi (0, 2) + Bi (0,−2)]} (i = x , y , z )

∂2Bi (x,z)
∂x∂z = 1

12(∆x)∆z) {12 ∗ Bi (0, 0) − [Bi (1, 2) + Bi (−1,−2)] − [Bi (2, 1) + Bi (−2,−1)]
+ 9[Bi (1, 1) + Bi (−1,−1)] − 7[Bi (1, 0) + Bi (−1, 0)] − 7[Bi (0, 1) + Bi (0,−1)]
− [Bi (1,−1) + Bi (−1, 1)] + [Bi (2, 0) + Bi (−2, 0)] + [Bi (0, 2) + Bi (0,−2)]} (i = x , y , z )

Third order derivatives

∂3Bi (x,z)
∂x3 = 1

2(∆x)3 {[Bi (2, 0) − Bi (−2, 0)] − 2[Bi (1, 0) − Bi (−1, 0)]} (i = x , y , z )
∂3Bi (x,z)

∂z3 = 1
2(∆z)3 {[Bi (0, 2) − Bi (0,−2)] − 2[Bi (0, 1) − Bi (0,−1)]} (i = x , y , z )

∂3Bi (x,z)
∂x2∂z

= 1
2(∆x)2 (∆z) {[Bi (1, 1) − Bi (−1,−1)] − [Bi (1,−1) − Bi (−1, 1)] − 2[Bi (0, 1) − Bi (0,−1)]} (i = x , y , z

)

∂3Bi (x,z)
∂x∂z2 = 1

2(∆x)(∆z)2 {[Bi (1, 1) − Bi (−1,−1)] + [Bi (1,−1) − Bi (−1, 1)] − 2[Bi (1, 0) − Bi (−1, 0)]} (i = x , y , z
)



Fourth order derivatives

∂4Bi (x,z)
∂x4 = 1

(∆x)4 {[Bi (2, 0) + Bi (−2, 0)] − 4[Bi (1, 0) + Bi (−1, 0)] + 6B(0, 0)} (i = x , y , z )
∂4Bi (x,z)

∂z4 = 1
(∆z)4 {[Bi (0, 2) + Bi (0,−2)] − 4[Bi (0, 1) + Bi (0,−1)] + 6B(0, 0)} (i = x , y , z )

∂4Bi (x,z)
∂x3∂z

= 1
2(∆x)3 (∆z) {[Bi (2, 1) + Bi (−2,−1)] − [Bi (2, 0) + Bi (−2, 0)] − 3(Bi (1, 1) + Bi (−1,−1))

− [Bi (1,−1) + Bi (−1, 1)] + 4[Bi (1, 0) + Bi (−1, 0)] + 3[Bi (0, 1) + Bi (0,−1)] − 6Bi (0, 0)} (i = x , y , z )

∂4Bi (x,z)
∂x2∂z2 =

1
(∆x)2 (∆z)2 {[Bi (1, 1) − Bi (−1,−1)] + [Bi (1,−1) − Bi (−1, 1)] − 2[Bi (1, 0) − Bi (−1, 0)]

− 2[Bi (0, 1) − Bi (0,−1)] − 4Bi (0, 0)} (i = x , y , z )

∂4Bi (x,z)
∂x∂z3 = 1

2(∆x)(∆z)3 {[Bi (1, 2) + Bi (−1,−2)] − [Bi (0, 2) + Bi (0,−2)] − 3[Bi (1, 1) + Bi (−1,−1)]
− [Bi (1,−1) + Bi (−1, 1)] + 4[Bi (0, 1) + Bi (0,−1)] + 3[Bi (1, 0) + Bi (−1, 0)] − 6Bi (0, 0)} (i = x , y , z )

COMPARISON OF THE ”fit a function method” WITH THE ”numerical method”
MEDIAN PLANE SYMMETRY

This section is devoted to the comparison of the ”fit a function method” with that of the ”numerical method” that both were
discussed earlier. The comparison consist in computing the components [Bx (x, yconst, z), By (x, yconst, z), Bz (x, yconst, z)]
of the B-field of a magnet on a plane at a distance yconst from the reference plane (y=0), using each of the methods, and
comparing each set of these fields components against the ”exact fields” which were calculated by the 3D OPERA computer
code [11]. Fig. 5 is an isometric view of one of the cell’s magnets of the CBETA accelerator [1] whose field components
are calculated by the 3D OPERA code, and are used for the comparison of the two methods.

Figure 5: An isometric view of a modified Halbach magnet which generates a combined dipole and quadrupole field. The
fields of this magnet are used in testing the two methods as it is described in this section.

The procedure of comparison of the fields as calculated by each of the two methods is described below.

1. The exact field components [Bx (x, y, z), By (x, y, z), Bz (x, y, z)] over the space generated by the magnet shown
in Fig. 5 have been calculated using the OPERA computer code. This magnet is a modified Halbach magnet and is designed
to provide a dipole and a quadrupole field. These OPERA-calculated-fields are considered to be the ”exact fields” and will
be used as the basis of comparison with the fields calculated by the ”fit a function method” and the ”numerical method”.

2. A rectangular area 16x16 mm2 normal to the y axis located on the median plane and centered on a verti-
cal plane which is in conduct with one of the hard edges of the magnet, is chosen, and the field components
[Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] are tabulated at every grid point of the area. The grid size over the area is



1 mm in either x or z direction. The field components [Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] at each of the grid
points of the 16x16 mm2 area have been calculated by the OPERA computer code and the color contours of the By field
component are plotted over the area. These field components over this area may be considered that they correspond to the
experimentally measured field components of the magnet. A histogram plot of the By (x, y = 0, z) field component over this
16x16 mm2 rectangular area is shown in Fig. 6. The algorithm uses the field components at the grid points shown over the
rectangular area. The (0,0) point shown in Fig. 6 is the origin of the local coordinate system (xl, yl) for this particular
”small grid area”.

3. In this step the algorithm is applied to calculate the [Bx (x, yconst, z), By )x, yconst, z), Bz (x, yconst, z)] field
components, at a plane parallel to the y=0 plane and located at a distance yconst from the reference plane (y=0), using the
”fit a function method” or the ”numerical method”.

4. Each set of the calculated field components on this plane are compared with the ”exact field components” as calculated
by the OPERA computer code on the same plane.

Figure 6: A histogram of the By (x, y = 0, z) field component over the reference plane located at y=0. The algorithm uses
the field components at the grid points shown over the rectangular area to calculate the required partial derivatives of the
field components. The (0,0) point shown in the figure is the origin of the local coordinate system (xl, yl) for this particular
”small grid area”.

Results from the comparison of the ”fit a function method” with the ”numerical method”
The off-plane field components [Bx (x, yconst, z), By (x, yconst, Bz (x, yconst, z)] have been calculated on four plane grids

12x12 mm2 and each plane has been chosen at distances yconst=(0.5, 1.0, 1.5 and 2.0) cm from the median plane.
Fig. 7 plots the difference of the calculated by the algorithm Bz(calc) component, from the ”ideal” Bz(ideal) component as
calculated by the OPERA computer method on a plane with y=0.5 cm.

The two plots on top in Fig. 7 correspond to the difference of the fields [Bz(calc)-Bz(ideal)] where Bz(ideal) is the
field calculated by the OPERA computer code and Bz(calc) is the field calculated by either the ”fit a function method”
(left plot) or the ”numerical method” (right plot). The two plots on the bottom correspond to the percent difference
100.0[Bz(calc)-Bz(ideal)/Bz(ideal)] of these fields.
In this particular example the maximum deviation of the Bz(calc) component from the ideal Bz(ideal) field is from (-0.35 to
0.15) Gauss and (0.0 to 0.03) Gauss for the ”fit a function method” and the ”numerical method” respectively. The percent
variation of Bz(calc) component from the ideal Bz(ideal) field is from (-0.06% to 0.12%) and (-0.01% to -0.001%) for the
”fit a function method” and the ”numerical method” respectively.
The following Figs. 8, 9, and 10 are similar to Fig. 7 but the fields have been calculated at plane with y coordinate (1.0,
1.5, and 2.0) cm.

Both methods the ”fit a function” and the ”numerical” method of calculating the off-plane field components provide
accurate results with less than 1% relative error when the field component are calculated at a y-distance <2.0 cm from the
reference plane (y=0). It is understood that this 2.0 cm limit depends on the aperture of the magnet which in this example is
4.4 cm. In this example only the Bz (x, yconst, z) has been chosen for comparison in the Fig. 7, 8, 9, and 10 because for



Figure 7: The two plots on top correspond to the difference of the fields [Bz(calc)-Bz(ideal)] where the Bz(calc) was
calculated with the ”fit a function method” (left plot) and the ”numerical method” (right plot). The two plots on the bottom
correspond to the percent difference 100.0[Bz(calc)-Bz(ideal)/Bz(ideal)].

Figure 8: Same as Fig. 7 but the plane the field are calculated are at y=1.0 cm from the reference plane (y=0.0).

some reason it yields a bit higher error as compared with the other two components Bx (x, yconst, z), and By (x, yconst, z).
As was demonstrated earlier both methods depend on the partial derivatives of the field components on the plane where the
fields are measured and these partial derivatives of the field components as calculated by the ”fit a function method” and
the ”numerical method” appear in Table 1 of APPENDIX I.



Figure 9: Same as Fig. 7 but the plane the field are calculated are at y=1.5 cm from the reference plane.

Figure 10: Same as Fig. 7 but the plane the field are calculated are at y=2.0 cm from the reference plane.

COMPARISON OF THE ”fit a function method” WITH THE ”numerical method”
NON MEDIAN PLANE SYMMETRY

This section is similar to the previous one but it is related to the calculation of off-plane field components from the
knowledge of the field components on a plane grid which is not a symmetry plane of the magnet. A way to generate
a non symmetry plane is to rotate the magnet shown in Fig. 5 by some angle about the longitudinal z-axis. Fig. 11 is
an isometric view of such a magnet rotated by 45o angle about the z-axis. As in the case of the magnet with median
plane symmetry, a small rectangular area 16x16 mm2 has been chosen on the x,z plane at y=0 and the field component
[Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] have been recorded on a rectangular grid with spacing 1 mm in either x or



z direction. The colors on the 16x16 mm2 small area shown in Fig. 11are the contours of the Bx (x, y = 0, z) component
which has been calculated using the 3D OPERA computer code. A histogram plot of the Bx (x, y = 0, z) component over
this rectangular area is shown in Fig. 12. The same procedure which was used in the previous section to calculate the
off-plane field components [Bx (x, yconst, z), By )x, yconst, z), Bz (x, yconst, z)] from the known components on the plane
grid with median plane symmetry, is also used in this section.

Figure 11: An isometric view of the magnet with no symmetry plane. This magnet is identical to the the magnet shown in
Fig.5, but rotated by 45o about the z-axis. In OPERA code rotating the permanent magnets by an angle does rotate the
magnetization vector of each permanent magnet therefore the field of the rotated magnet is not related to the field of the
non-rotated magnet. This is not a issue since the goal is to generate a magnet which does not possess a symmetry plane.

Figure 12: A histogram plot of the (Bx (x, y = 0, z) component over the small area of 18x18 mm2. The (Bx (x, y = 0, z)
component has been calculated by the 3D OPERA computer code. Only the values of the components on the grid points
are used by the two methods discussed in this paper.

Results from the comparison of the ”fit a function method” with the ”numerical method”
The off-plane field components [Bx (x, yconst, z), By (x, yconst, Bz (x, yconst, z)] have been calculated on plane grids

12x12 mm2 in area. Four planes has been selected at distances yconst=(0.5, 1.0, 1.5 and 2.0) cm from the reference plane



respectively. The 3D plots in Figs 13, 14, 15, and 16, are similar to Fig. 7, 8, 9, and 10 but they correspond to the fields of a
reference plane which does not possess median plane symmetry. Table 2 in APPENDIX I tabulates these partial derivatives
of the field components as calculated by the ”fit a function method” and the ”numerical method” for comparison.

Figure 13: Same as Fig. 7 but the reference plane is not a symmetry plane.

Figure 14: Same as Fig. 13 but the plane the field are calculated are at y=1.0 cm from the reference plane.



Figure 15: Same as Fig. 13 but the plane the field are calculated are at y=1.5 cm from the reference plane.

Figure 16: Same as Fig. 13 but the plane the field are calculated are at y=2.0 cm from the reference plane.

CONCLUSION
The algorithm to calculate the [Bx (x, y, z), By (x, y, z), Bz (x, y, z)] field components of the magnetic field at a point

(x, y, z) in space, from the knowledge of the components [Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] on a plane normal
to the y-axis at y=0 has been applied on two magnets, each having an aperture of 4.4 cm. One of the magnets possess median



plane symmetry and the other with no median plane symmetry. The off-plane median plane field components calculated
using this algorithm yield relative error of less than 1% for field points at distances less than 2 cm from the reference plane
where the field components are measured on a rectangular grid of the plane. The required spatial partial derivatives of the
field components [Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] were calculated using the ”fit a function” method and the
”numerical” method. No significant difference is observed using either of the methods to calculate the partial derivatives.
The use of ”fit a function” method provides the derivatives at the point where the particle is located therefore it provides the
required fields at the location of the particle as needed. The fit a function method may also work as a ”smoothing” of the
values of the experimentally measured field components. However this method requires the partition of the 2D field map in
smaller-grid-planes for the polynomial function to fit with accuracy the experimental points.
The use of the ”numerical” method provides the derivatives at the grid points (xgrid, zgrid) where the fields on the plane are
measured therefore it may provide better accuracy than the ”fit a function” method. However to calculate the field components
at the particle location (x,y,z) other than a grid point, the field components at four adjacent grid points (xgrid, y, zgrid) should
be calculated and the field components at required point (x,y,z) can be obtained by linear interpolation of the calculated
field components at these four grid points. The error of measuring the field components on the 2D grid determines the
degree of accuracy of the off-plane calculated fields. Such an error study is planned to be carried out in another paper.

APPENDIX I
For a magnet with median plane symmetry [Bx (x, y = 0, z) = 0, By (x, y = 0, z), Bz (x, y = 0, z) = 0] Table 1 lists the

partial derivatives of the field components on the reference plane as calculated by the ”fit a function” method and ”numerical”
method up to 4th order. Only the partial derivatives at the point with coordinates (xl, zl)=(0.0,0.0) of the local coordinate
system are listed.
For a magnet with no median plane symmetry [Bx (x, y = 0, z), By (x, y = 0, z), Bz (x, y = 0, z)] Table 2 lists the partial
derivatives of the field components on the reference plane as calculated by the ”fit a function” method and ”numerical”
method up to 4th order. Only the partial derivatives at the point with coordinates (xl, zl)=(0.0,0.0) of the local coordinate
system are listed. From the values of the derivatives up to third order appearing in Table 1 there is agreement between
the two methods. There is some disagreement between the 4th order derivative of the two methods and this is under
investigation.

.
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Table 1: Calculated derivatives at local coordinates (xl, zl)⇒ (0.0, 0.0).The reference plane is a symmetry plane.

Order Method
0th Bx (x, 0, z) By (x, 0, z) Bz (x, 0, z)

function 0.000 -1572.011 0.000

numeric 0.000 -1572.011 0.000

1st ∂Bx (x,z)
∂x

∂By (x,z)
∂x

∂By (x,z)
∂z

∂Bz (x,z)
∂z

function 0.00000 570.09231 -431.90261 0.00000

numeric 0.00000 570.09256 -431.96004 0.00000

2nd ∂2Bx (x,0,z)
∂x2

∂2Bx (x,0,z)
∂x∂z

∂2By (x,0,z)
∂x2

∂2By (x,0,z)
∂z2

∂2Bz (x,0,z)
∂x∂z

∂2Bz (x,0,z)
∂z2

function 0.00000 0.00000 -0.52016 2.14901 0.00000 0.00000
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3rd ∂3Bx (x,0,z)
∂x3

∂3Bx (x,0,z)
∂x∂z2

∂3By (x,0,z)
∂x3

∂3By (x,0,z)
∂x2∂z

∂3By (x,0,z)
∂x∂z2

∂3By (x,0,z)
∂z3

∂3Bz (x,0,z)
∂x2∂z

∂3Bz (x,0,z)
∂z3

function 0.00000 0.00000 0.18314 -16.84934 -0.38131 76.00816 0.00000 0.00000

numeric 0.00000 0.00000 0.12207 -16.90674 -0.42725 78.12500 0.00000 0.00000

4th ∂4Bx (x,0,z)
∂x4

∂4Bx (x,0,z)
∂x3∂z

∂4Bx (x,0,z)
∂x2∂z2

∂4Bx (x,0,z)
∂x∂z3

∂4By (x,0,z)
∂x4

∂4By (x,0,z)
∂x2∂z2

∂4By (x,0,z)
∂z4

∂3Bz (x,0,z)
∂x3∂z

∂4Bz (x,0,z)
∂x2∂z2

function 0.00000 0.00000 0.00000 0.00000 -0.01799 0.07320 0.07916 0.00000 0.00000

numeric 0.00000 0.00000 0.00000 0.00000 -2.44141 -1.22070 0.00000 0.00000 0.00000
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∂z4
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Table 2: Calculated derivatives at local coordinates (xl, zl)⇒ (0.0, 0.0). The reference plane is not a symmetry plane.

Order Method
0th Bx (x, 0, z) By (x, 0, z) Bz (x, 0, z)

function 1559.79235 -1.79460 141.75974

numeric 1559.79236 -1.79460 141.76030

1st ∂Bx (x,z)
∂x

∂By (x,z)
∂x

∂By (x,z)
∂z

∂Bz (x,z)
∂z

function -402.98225 -403.34834 2.44125 -0.42046

numeric -402.98227 -403.34836 2.44497 -0.42057

2nd ∂2Bx (x,0,z)
∂x2

∂2Bx (x,0,z)
∂x∂z

∂2By (x,0,z)
∂x2

∂2By (x,0,z)
∂z2

∂2Bz (x,0,z)
∂x∂z

∂2Bz (x,0,z)
∂z2

function 1.56749 -127.84968 -0.00232 0.01408 -2.10550 -25.12737

numeric 1.57776 -127.90222 -0.00271 0.01408 -2.10629 -25.14687

3rd ∂3Bx (x,0,z)
∂x3

∂3Bx (x,0,z)
∂x∂z2

∂3By (x,0,z)
∂x3

∂3By (x,0,z)
∂x2∂z

∂3By (x,0,z)
∂x∂z2

∂3By (x,0,z)
∂z3

∂3Bz (x,0,z)
∂x2∂z

∂3Bz (x,0,z)
∂z3

function -0.30663 0.30935 -0.12736 -2.64491 0.25939 -2.29635 0.30936 -0.08158

numeric -0.30518 0.30518 -0.12589 -2.64657 0.25940 -2.43682 0.31662 -0.06866

4th ∂4Bx (x,0,z)
∂x4

∂4Bx (x,0,z)
∂x3∂z

∂4Bx (x,0,z)
∂x2∂z2

∂4Bx (x,0,z)
∂x∂z3

∂4By (x,0,z)
∂x4

∂4By (x,0,z)
∂x2∂z2

∂4By (x,0,z)
∂z4

∂3Bz (x,0,z)
∂x3∂z

∂4Bz (x,0,z)
∂x2∂z2

function -0.03460 -29.72878 0.04741 26.19379 0.01056 -0.01112 -0.00297 0.03632 27.06844

numeric -3.66211 -24.41406 -3.66211 30.51758 0.10014 0.08345 -0.00119 -0.26703 27.54211

4th ∂4Bz (x,0,z)
∂x ∂z3 ∂4Bz (x,0,z)

∂z4

function -0.08021 17.63594

numeric -0.41962 18.76831


