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Spin Resonance Free Electron Ring Injector
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(Dated: January 3, 2017)

We have developed an intrinsic resonance free circular electron accelerator. This lattice could be
placed in the existing RHIC tunnel and accelerate electrons from 100 MeV to 20 GeV avoiding all
major polarization loss usual in such machines.

I. INTRODUCTION

We present a spin resonance free electron ring injector
for an electron ion collider. Such an accelerator will pro-
vide spin polarized electrons for energies up to 20 GeV.
The proposed device will fit in the existing RHIC tunnel,
employ standard technology, and accelerate an electron
bunch to top energy in about 5-50 msecs. In the past
it was believed that such a device would cause profound
polarization loss due the combined effects of many depo-
larizing resonances. However we have recently devised a
lattice which by virtue of the symmetry of construction
and high operating tunes, avoids all significant depolar-
ization sources in the energy range of its operation.

II. SPIN RESONANCE REVIEW

The dynamics of the spin vector of a charged particle
with q charge in the laboratory frame is described by the
Thomas-BMT equation,

d~S

dt
=

q

γm
~S ×

(
(1 +Gγ) ~B⊥ + (1 +G) ~B‖

)
, (1)

~S is the spin vector of a particle in the rest frame, and
~B⊥ and ~B‖ are defined in the laboratory rest frame with

respect to the particle’s velocity. G = g−2
2 is the anoma-

lous magnetic moment coefficient, and γmc2 is the energy
of the particle. Here we neglect the electric fields. This
equation is usually transformed by expanding about a
reference orbit described by the Frenet-Serret coordinate
system shown in Fig. 1. Thus we have

dx̂

ds
=
ŝ

ρ
,
dŝ

ds
= − x̂

ρ
, and

dẑ

ds
= 0, (2)

where ρ is the local radius of curvature for the reference
orbit. This is satisfactory for a trajectory in the plane (no
vertical bends). Particle motion can be parameterized in
this coordinate system as,

~r = ~ro(s) + xx̂+ zẑ. (3)

Here, ~ro(s) is the reference orbit, and ŝ = d~ro/ds. Also
since we are concerned only with spin 1/2 particles, we
can employ the well-developed spinor formalism. To-
gether, following a standard derivation1 , this yields a
new form of the Thomas-BMT equation:

FIG. 1. The curvilinear coordinate system for a particle mo-
tion in a circular accelerator. x̂ , ŝ and ẑ are the transverse
radial, the longitudinal, and the transverse vertical unit basis
vectors, and ~r0(s) is the reference orbit.

dΨ

dθ
= − i

2

(
f3 −ξ
−ξ∗ −f3

)
Ψ. (4)

Where ξ(θ) = F1 − iF2 and f3 = (1 + F3) with,

F1 = −ρz′′(1 +Gγ)

F2 = (1 +Gγ)z′ − ρ(1 +G)

(
z

ρ

)′
F3 = −(1 +Gγ) + (1 +Gγ)ρx′′. (5)

Here, θ is the orbital angle that remains constant outside
the bends. Although the spinor function Ψ is similar in
form to the quantum-mechanical-state function, in this

case ~S is a classical vector. However, as in the former
case, this two-component spinor is defined,

Ψ =

(
u
d

)
. (6)

u and d are complex numbers representing the up- and
down-components. The components of the spin vector
become

S1 = u∗d+ ud∗

S2 = −i(u∗d− ud∗)
S3 = |u|2 − |d|2. (7)

Because H = (~σ · ~n) is hermitian,

|~S| = |u|2 + |d|2 = Ψ†Ψ (8)
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and the magnitude of the spin-vector remains constant.
We chose the normalization condition for the spinor func-
tion to be Ψ†Ψ = 1. Moving to the Interaction frame
using the transformation:

Ψ(θ) = exp

(
− i

2

∫ θ

0

f3(t)dtσ̂z

)
ΨI(θ)

ξ̂(θ) = ξ(θ) exp

(
i

∫ θ

0

f3(t)dt

)
, (9)

yields the following:

dΨ+
I

dθ
=
i

2
ξ̂Ψ−I

dΨ−I
dθ

=
i

2
ξ̂∗Ψ+

I . (10)

These equations can be cast into a standard 2nd order ho-
mogeneous linear differential equation with variable co-
efficients,

d2Ψ+
I

dθ2
−
(
if3(θ) +

ξ′(θ)

ξ(θ)

)
dΨ+

I

dθ
+
ξ(θ)ξ(θ)∗

4
Ψ+
I = 0.

(11)

When evaluating the cumulative effect of the lattice on
the spin, the standard approach is to expand F1 − iF2

into a multiperiodic series:

ξ(θ) = F1 − iF2 =
∑
K

εKe
−iKθ. (12)

Upon analyzing ξ̂ one finds the frequencies are of the
form K = M+`zνz+`xνx, where M is an integer, `x,z =
−1, 0, 1 and νz,x are the vertical and horizontal tunes.
The resonance strength εK is:

εK = − 1

2π

∮
[(1 +Gγ)(ρz′′ + iz′)−

iρ(1 +G)(
z

ρ
)′
]
eiKθdθ. (13)

Also usually the (1 + Gγ)ρx′′ term is ignored to first
order, so `x = 0. Since θ is constant in a region with-
out dipoles, it is usually clearer to express the resonance
integral in terms of s:

εK = − 1

2π

∮ [
(1 +Gγ)(z′′ +

iz′

ρ
)−

i(1 +G)(
z

ρ
)′
]
eiKθ(s)ds. (14)

For well isolated resonances the amount of depolar-
ization caused by acceleration through any given spin
resonance can be evaluated using the Froissart-Stora
formula2

Pf
Pi

= 2e−(π|εK |
2/2α) − 1, (15)

where,

α =
1

ωrev

dνs
dt

(16)

is the spin tune crossing rate dvided by the angular rev-

olution frequency ωrev, and
Pf

Pi
is the ratio of initial ver-

tical to final vertical polarization. For a flat orbit in a
constant verical field α ≈ d(Gγ)/dθ. The Froissart-Stora
formula represents a solution to the T-BMT equation for
the special case of crossing an isolated spin resonance.

Evaluation of Eq. (14) shows that there are several
classes of spin resonances. They all can be related back to
the vertical motion of the beam through the quadrupoles.
This is because quadrupoles are the primary places in
the lattice where the particle experiences horizontal mag-
netic fields which are capable of perturbing the spin from
its vertical orientation. Thus its useful to decompose
the vertical beam motion into its betatron part (zβ) and
closed orbit piece (zco).

z = zβ + zco (17)

Thus the spin resonances can be attributed these two
terms. The first type are called intrinsic, which are due
to the natural betatron motion. Their strength is propor-
tional to the action of the particle and they live whenever
Gγ = K = N±Qz. HereN is an arbitrary integer andQz
is the vertical betatron tune. The second class is called
imperfection spin resonances and are due to the vertical
closed orbit distortions. They occur at Gγ = K = N .

There are also of course other spin resonances for ex-
ample due to linear betatron coupling and synchrotron
sideband. However these are usually much weaker than
these first two class of resonance.

III. RESONANCE FREE DESIGN

If one evaluates the contributions to the integral in
Eq. (14) we see that integrand is function of z′′, z′ and
( zρ )′. All of these factors are proportional to the strength

and periodicity of the quadrupoles. In the case of a per-
fectly circular ring, (no straight sections), they can only
contribute when K is equal to Pn±Qz where P is the pe-
riodicity of the lattice and n and arbitrary integer. This
is essentially what has been shown in S.Y. Lee’s book1

in his calculation of the so-called enhancement functions
which appear in the evaluation of Eq. (14),

ζP (
K ±Qz

P
)

ζP (x) =
sin(Pπx)

sin(πx)
. (18)

Thus if we design a true ring lattice with super-
periodicity equal to P=48 and a vertical tune with the
integer part near 48 we should be able to accelerate up
to Gγ = 48 with out crossing any significant intrinsic
resonances. This is because the electron energy range
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from 100 MeV to 20 GeV corresponds to 0.24 < Gγ <
45.5. Thus the relavant spin resonances will occur at
0.23 < |K| < 45.5. The first two important spin reso-
nances associated with this type of lattice will occur at
K = P − 48.νz = νz and K = 2P − 48.νz = 48.νz (here
νz is the fractional part of the tune).

However we really want the ring to fit into the existing
RHIC tunnel so we are stuck with the natural super-
periodicity of six. If we consider that the spin precession
which advances Gγ, occurs in the dipoles, one can recover
the 48 super-periodicity from the point of view of Gγ
precession. This can be accomplished, if we are careful in
how we construct the straight sections and make them so
that the integral of Eq. (14) goes to zero. In this way if we
maintain the super-periodicity of 48 in the arcs we should
maintain the same intrinsic resonance structure of the
pure ring (see Fig. 2). A side benefit is that in addition

FIG. 2. Projecting the pure ring lattice with 48 super-
periodicity onto the RHIC six fold periodic ring. If we keep
the straight sections spin transparent then we can maintain
the 48 super-periodicity.

to the intrinsic resonances, the imperfection resonances
should also be minimized due to the design of this lattice.
This is because the strongest imperfection resonances,
like the intrinsic resonances for a pure ring, will be at
nP ± [Qz] where [Qz] indicates the integer part of the
tune.

IV. PERFORMANCE

Following the principles outlined in the previous sec-
tion we have constructed a lattice to fit into the existing
RHIC tunnel. We first consider the performance of an
ideal error free lattice. The DEPOL calculated intrinsic
resonance structure follow, as was predicted, with negli-
gible strength until Gγ reaches 48 (see Fig. 3). Tracking
with this error free lattice also demonstrated no source of
polarization loss out to emittances in excess of 1000 mm-
mrad normalized. One reaches the end of the dynamic
aperture before depolarization is possible. For these and
future tracking we considered ramp rates which corre-
sponded to 5 msec or 400 turns to 20 GeV. We also con-

FIG. 3. Intrinsic Resonance Strength’

FIG. 4. Imperfection Resonance Strength’

sidered 10 times this amount or 50 msec or 4000 turns to
20 GeV to understand the limits and effect of ramp rate
on polarization losses.

We also wanted to understand the field tolerances for
this idealize lattice structure. We found that the addition
of up to 0.1% in field errors had no significant impact on
the calculated intrinsic resonances. This was also born
out by tracking results.

Next we considered the effect of closed orbit errors and
the associated imperfection resonance which they cause.
In Fig. 4 the DEPOL calculated imperfection resonances
are shown for different closed orbit errors. Again we can
see the behavior is as predicted, with the first strong
imperfection occurring at Gγ = 48 below our 45.5 ex-
traction Gγ. Still in this case imperfection resonances
below 45.5 are not insignificant and could constitute an
important source of polarization loss.

A. Zgoubi Tracking Results

In Fig. 5 we see results from tracking with Zgoubi3 for
the same closed orbit errors in Fig. 4. We see that even
at 10 times slower rate than what is anticipated for this
accelerator we can tolerate closed orbit errors less than
0.12 mm rms for Gγ values greater than 44. Below this
we should be able to tolerate as high as 0.3 mm rms.
In Fig. 6 we show the tracking results for the 0.3 mm
rms case, now comparing it to the nominal acceleration
rate of 5 msecs. For the existing RHIC operations we
typically see rms orbit errors on the level of 0.1 mm at
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FIG. 5. Zgoubi 8 particle tracking using 50 msec ramp rate
with 0.54, 0.3, 0.21 and 0.12 mm rms closed orbit errors.
Plot of Gγ = 0 to 46 (top) with a zoom from Gγ = 0 to 46
(bottom).

FIG. 6. Effect of ramp rate 5 versus 50 msec ramp rate with
closed orbit errors of 0.3 mm rms.

injection and 0.04 mm at store.
In addition to closed orbit we wanted to understand the

impact that rolls in the magnets could have on our po-
larization. Since DEPOL cannot correctly calculate non-
plannar spin resonances we had to rely on spin tracking.
Quadrupole rolls should impact the betatron coupling
present in the lattice. This in turn generates a coupled
intrinsic spin resonance. However since the magnitude of
the coupled intrinsic spin resonance is both proportional
to and less than the normal intrinsic resonance we didn’t
anticipate any significant effects due to quadrupole rolls.
This is actually what was observed. We saw no appre-
ciable effect with rolls as high as 0.1 rad rms.

Rolls to the dipole however did effect the polarization
to an appreciable extent. Observation of the spin track-
ing results shown in Fig. 7 - 9 show that we can only
tolerate a dipole rolls less than 0.5 mrad rms. Also we
can see that the impact seems to be on the imperfection

FIG. 7. Zgoubi 8 particle tracking using 5 msec ramp rate.

FIG. 8. Zgoubi 8 particle tracking using 5 msec ramp rate
with only Dipole Rolls.

resonances primarily since when we accelerate at a slower
rate we can see the depolarization occurring when Gγ =
integer.

V. ACHIEVABLE RAMP RATE

Can we build a cost and risk effective system to take
us from 200 MeV to 20 GeV in under 50 msecs? From
the point of view of ramping the magnetic field of the
dipoles, this should be achievable. The dipoles for this
lattice have a length of 4.64 meters with a bend angle of
0.016363 rad at 20 GeV they will reach a peak field of
0.22 Tesla in 50 msecs (20 Hz) or achieve a rate of 4.4
T/sec, at 5 msecs this is 44 T/sec . As a comparison the
ISIS ring at Rutherford Lab reaches 0.7 Tesla at 50 Hz

FIG. 9. Effect of ramp rate 5 versus 50 msec ramp rate.
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FIG. 10. Dipole field strength in Tesla versus turn number
for an 60 MV per turn fixed phase acceleration. (5 msec ramp
rate)

FIG. 11. Energy in eV versus turn number for an 60 MV per
turn fixed phase acceleration. (5 msec ramp rate)

which translates into 35 T/sec.

From the point of view of the rf system, this might be
more challenging. If we account for radiation power loss
we can get to top energy over approximately 400 turns
using a single cavity powered at a fixed 60 MV per turn
and fixed phase. In Fig. 10 we can see the calculated
dipole field trajectory as a function of turn number and
in Fig. 11 the calculated energy as a function of turn

number for this system. The outstanding question is the
risk and cost associated with the construction of such an
rf system.

VI. FEASIBILITY OF SLOWER RAMP RATE

If we reduce our ramp rate to 500 msec then the tol-
erances on the orbit might be very difficult to reach.
However this might be solved by introducing a partial
solenoidal snake somewhat similar to what we use to have
in the AGS (5-10% snake). This could be achieved us-
ing 7.24 m solenoid ramped from 0.02 T to 4 T over half
a second during acceleration from 200 MeV to 20 GeV.
This will take care of the imperfections, however care
must be taken so that it doesn’t break the symmetry
too much and introduce intrinsic resonances that are too
large. We are currently studying this option.

VII. CONCLUSION

The effect of intrinsic resonances for this proposed lat-
tice are non-existent (we will run out of aperture before
they can effect the spin). The major effect comes from
imperfections and dipole rolls. It can handle up 0.3 mm
rms orbit distortion for the 50 msec ramp. This is what
RHIC easily does currently. Also these orbit tolerance
are in force only at the top end of the ramp, at Gγ above
44. Below 30 Gγ we could tolerate much more than 0.54
mm rms. We can handle effects due to dipole rolls less
than 0.5 mrad rms.

The proposed ramp rate is achievable from the point
of view of the dipole field, however the performance of
the RF system is still an outstanding question. It’s per-
formance would be a function of the total current and
the achievable peak accelerating fields and achievable cy-
cle rate, constrained by mechanical stress. If necessary
slower ramp rates might be feasible with the introduction
of a ramp solenoid partial snake. This is currently under
study.
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